Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(g(X)) → mark(h(X))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(X))
mark(c) → active(c)
mark(d) → active(d)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(g(X)) → mark(h(X))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(X))
mark(c) → active(c)
mark(d) → active(d)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(g(X)) → mark(h(X))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(X))
mark(c) → active(c)
mark(d) → active(d)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)
Used ordering:
Polynomial interpretation [25]:
POL(active(x1)) = 1 + 2·x1
POL(c) = 1
POL(d) = 1
POL(g(x1)) = 1 + x1
POL(h(x1)) = 1 + x1
POL(mark(x1)) = 1 + 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ AAECC Innermost
Q restricted rewrite system:
The TRS R consists of the following rules:
active(g(X)) → mark(h(X))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(X))
mark(c) → active(c)
mark(d) → active(d)
Q is empty.
We have applied [19,8] to switch to innermost. The TRS R 1 is none
The TRS R 2 is
active(g(X)) → mark(h(X))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(X))
mark(c) → active(c)
mark(d) → active(d)
The signature Sigma is {active, mark}
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(g(X)) → mark(h(X))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(X))
mark(c) → active(c)
mark(d) → active(d)
The set Q consists of the following terms:
active(g(x0))
active(c)
active(h(d))
mark(g(x0))
mark(h(x0))
mark(c)
mark(d)
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
MARK(d) → ACTIVE(d)
MARK(c) → ACTIVE(c)
MARK(h(X)) → ACTIVE(h(X))
ACTIVE(c) → MARK(d)
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(g(X)) → MARK(h(X))
ACTIVE(h(d)) → MARK(g(c))
The TRS R consists of the following rules:
active(g(X)) → mark(h(X))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(X))
mark(c) → active(c)
mark(d) → active(d)
The set Q consists of the following terms:
active(g(x0))
active(c)
active(h(d))
mark(g(x0))
mark(h(x0))
mark(c)
mark(d)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(d) → ACTIVE(d)
MARK(c) → ACTIVE(c)
MARK(h(X)) → ACTIVE(h(X))
ACTIVE(c) → MARK(d)
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(g(X)) → MARK(h(X))
ACTIVE(h(d)) → MARK(g(c))
The TRS R consists of the following rules:
active(g(X)) → mark(h(X))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(X))
mark(c) → active(c)
mark(d) → active(d)
The set Q consists of the following terms:
active(g(x0))
active(c)
active(h(d))
mark(g(x0))
mark(h(x0))
mark(c)
mark(d)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
MARK(h(X)) → ACTIVE(h(X))
ACTIVE(g(X)) → MARK(h(X))
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(h(d)) → MARK(g(c))
The TRS R consists of the following rules:
active(g(X)) → mark(h(X))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(X))
mark(c) → active(c)
mark(d) → active(d)
The set Q consists of the following terms:
active(g(x0))
active(c)
active(h(d))
mark(g(x0))
mark(h(x0))
mark(c)
mark(d)
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
MARK(h(X)) → ACTIVE(h(X))
ACTIVE(g(X)) → MARK(h(X))
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(h(d)) → MARK(g(c))
R is empty.
The set Q consists of the following terms:
active(g(x0))
active(c)
active(h(d))
mark(g(x0))
mark(h(x0))
mark(c)
mark(d)
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
active(g(x0))
active(c)
active(h(d))
mark(g(x0))
mark(h(x0))
mark(c)
mark(d)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
MARK(h(X)) → ACTIVE(h(X))
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(g(X)) → MARK(h(X))
ACTIVE(h(d)) → MARK(g(c))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
Q DP problem:
The TRS P consists of the following rules:
MARK(h(X)) → ACTIVE(h(X))
ACTIVE(g(X)) → MARK(h(X))
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(h(d)) → MARK(g(c))
R is empty.
The set Q consists of the following terms:
active(g(x0))
active(c)
active(h(d))
mark(g(x0))
mark(h(x0))
mark(c)
mark(d)
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
active(g(x0))
active(c)
active(h(d))
mark(g(x0))
mark(h(x0))
mark(c)
mark(d)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ UsableRulesReductionPairsProof
Q DP problem:
The TRS P consists of the following rules:
MARK(h(X)) → ACTIVE(h(X))
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(g(X)) → MARK(h(X))
ACTIVE(h(d)) → MARK(g(c))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
MARK(h(X)) → ACTIVE(h(X))
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(g(X)) → MARK(h(X))
ACTIVE(h(d)) → MARK(g(c))
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(ACTIVE(x1)) = 1 + 2·x1
POL(MARK(x1)) = 2 + 2·x1
POL(c) = 0
POL(d) = 2
POL(g(x1)) = 1 + 2·x1
POL(h(x1)) = 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.